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Abstract
The symmetries of perturbed conformal field theories are analysed. We explain
which generators of the chiral algebras of a bulk theory survive a perturbation
by an exactly marginal bulk field. We also study the behaviour of D-branes
under current–current bulk deformations. We find that the branes always
continue to preserve as much symmetry as they possibly can, i.e. as much as
is preserved in the bulk. We illustrate these findings with several examples,
including permutation branes in WZW models and B-type D-branes in Gepner
models.

PACS numbers: 11.25.Hf, 11.25.−w

1. Introduction

Chiral symmetry algebras play an important role in the construction of exactly solvable
conformal field theories (see, e.g., [1–3]). Often these symmetries are only present at specific
points in the closed string moduli space and are partially broken when the theory is deformed
away from these special points. An important example is Gepner models which are rational
conformal field theories with N = 2 supersymmetry at a special point in the moduli space of
Calabi–Yau compactifications of string theory. Starting from such a highly symmetric point,
one can explore the moduli space by perturbing the original theory by some marginal operator
(see, e.g., [4–8]). In this context, it is important to know which part of the symmetry algebra
survives the deformation.

In many situations of interest the string background also involves D-branes. It is then
equally important to understand how much symmetry the branes continue to preserve under
the bulk deformation. In this paper, we shall give a fairly comprehensive analysis of this
question. Roughly speaking, we shall find that branes always continue to preserve as much
of the original symmetry as possible, i.e. as is preserved in the bulk. We shall also give a
criterion for which generators of the chiral algebras of the bulk survive the perturbation.
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Figure 1. An illustration of the gluing of the left- and right-moving chiral algebras: by the gluing
condition (1.1), the subalgebra Āinv is glued to ω(Ainv), whereas Ainv is glued to ω−1(Āinv). After
the deformation, only the fields in Ainv and Āinv stay chiral, which means that it only makes sense
to glue the fields in Ac and ω−1(Āc).

The operators that describe changes of the closed string moduli are exactly marginal bulk
operators. In the presence of boundaries these operators may cease to be exactly marginal
[9]. If this is the case, the bulk perturbation breaks the conformal invariance of the boundary
condition and induces a renormalization group flow on the boundary. In general, the resulting
boundary condition is then ‘far away’ from the original boundary condition and it will be
difficult to analyse the symmetries it continues to preserve. We shall, therefore, always
assume that no such renormalization group flow will be induced, i.e. that the boundary theory
can be smoothly adjusted to the deformation of the bulk. This is equivalent to the statement
that the boundary condition continues to be conformally invariant, i.e. that it continues to
satisfy T (z) = T̄ (z̄) on the boundary of the upper half-plane.

But even if the conformal symmetry is maintained, other symmetries may be broken
by the deformation. Let us assume that in the unperturbed theory the boundary preserves a
chiral symmetry algebra A. This means that the holomorphic fields S ∈ A are related to the
anti-holomorphic fields S̄ ∈ Ā on the boundary of the upper half-plane by

ω(S)(z) = S̄(z̄), (1.1)

where ω is an automorphism of the symmetry algebra A that describes how the left- and
right-moving chiral algebras are glued together at the boundary; we have also assumed that
the anti-chiral symmetry algebra Ā is isomorphic to A. If A continues to be a chiral symmetry
upon perturbation we can ask whether the gluing condition (1.1) is violated or deformed by
the perturbation3. For the case of a current–current deformation of the bulk we shall see
that (1.1), with a suitably modified ω, will always continue to hold even after the perturbation.
Thus boundary conditions always continue to preserve as much symmetry as they possibly
can.

There is, however, an interesting subtlety that deserves a comment. If the bulk perturbation
breaks A down to Ainv, it only makes sense (see figure 1) to require that (1.1) continues to
hold for fields in4

Ac = Ainv ∩ ω(Ainv). (1.2)

3 For boundary perturbations a similar problem was studied in [10–12].
4 Here we assume that the left- and right-moving algebras are broken in the same way, as is for example the case for
a current–current deformation by � = J J̄ .
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The above argument then only implies that the boundary theory preservesAc ⊆ Ainv. However,
as we shall see, the actual symmetry of the boundary theory is in fact Ainv: the spectrum of
boundary fields always contains an algebra of mutually local boundary fields associated with
Ainv, and thus the full spectrum can be organized in (twisted) representations of Ainv. The
subalgebra Ac ⊆ Ainv also plays a special role: it consists precisely of those fields that are
actually local with respect to all other boundary fields; with respect to Ac the full boundary
spectrum then forms a conventional (untwisted) representation.

We shall exemplify these findings (and subtleties) with a number of examples, most
notably branes on a torus and in a product of SU(2) WZW models. For these cases
our results agree with the geometric intuition about the behaviour of branes under bulk
deformations. We also consider complex structure deformations of B-type branes in Gepner
models for which the perturbing field is not of current–current type. This problem can be
conveniently studied using the language of matrix factorizations; the results we obtain are
in nice agreement with the expectations based on our general analysis of current–current
deformations.

The paper is organized as follows. In the remainder of this section we introduce some
basic notation. In section 2, we study the preserved symmetries of a theory without boundaries.
We show that a necessary criterion that a chiral field S stays chiral is that S does not have a
simple pole with the perturbing field �, see (2.2). If � is an exactly marginal current–current
field, this is also sufficient to all orders.

In section 3, we then consider conformal field theories with boundary. Any boundary
condition must preserve at least the conformal symmetry, i.e. T (z) = T̄ (z̄) on the boundary.
By investigating the perturbed version of this condition we rederive one of the key results of
[9] by a different method. We then study the behaviour of gluing automorphisms ω under bulk
perturbations. Under some weak assumptions we find that it is always possible to adjust the
gluing map, as long as the bulk symmetries in question are preserved.

In section 4, we analyse the behaviour of the boundary symmetry algebra under current–
current bulk perturbations directly from the point of view of the boundary theory. We derive
all-order criteria that describe when a boundary field (i) does not change its conformal weight,
when (ii) it remains self-local, when (iii) two boundary fields stay mutually local, and when
(iv) a boundary field remains relatively local with respect to all the other boundary fields. In
particular, this gives a criterion for the existence of a symmetry algebra on the boundary in the
sense of an algebra of mutually local fields. As we shall explain, the spectrum of boundary
fields can then be decomposed into twisted representations of this algebra. We also discuss a
number of examples and comment on the implications of these results for the structure of the
open string moduli space.

Finally, section 5 contains our conclusions. There are two appendices where some of the
more technical calculations are described.

1.1. Setup and notation

Let us begin by reviewing some basic facts about perturbed conformal field theories; they
were first considered by [13–16], for an introduction see, for example, [17]. We consider a
conformal field theory with action S0 and perturb the theory by a marginal operator �, where
h� = h̄�=1. This perturbation changes the action by

�S = −λ

∫
d2w �(w, w̄) (1.3)
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where λ is a dimensionless coupling constant, and the measure of the integral is normalized
such that d2w = dx dy where w = x + iy. Let 〈· · ·〉 denote the correlators in the unperturbed
theory; the perturbed correlators are then defined as

〈φ1(z1, z̄1) · · · φn(zn, z̄n)〉λ = 〈φ1(z1, z̄1) · · · φn(zn, z̄n) e−�S〉
〈e−�S〉 , (1.4)

and similarly for correlators involving boundary fields. The expression on the right-hand side
is divergent and has to be regularized. To do so we expand the exponential as a power series

e−�S =
∞∑

n=0

λn

n!

∫
d2w1 · · ·

∫
d2wn�(w1, w̄1) · · · �(wn, w̄n), (1.5)

and use the prescription that the domain of integration is restricted to

|wi − wj | > ε, |wi − zj | > ε. (1.6)

If we consider a theory on the upper half-plane H+, the integrals are further constrained by
Im wi > ε

2 . The parameter ε is a UV cut-off, and from the dependence of the correlators on ε

one can derive the renormalization group equations for λ and any other couplings (see [9] for
an analysis of the coupled bulk-boundary RG equations).

We are only interested in deformations � which remain marginal also in the perturbed
theory at finite λ. Such deformations are called exactly marginal and appeared first in
the analysis of critical lines of models at central charge 1, see, e.g., [18–20]. They are
characterized by the property that the corresponding coupling constant λ does not run under
the renormalization group flow. A simple class of exactly marginal operators (which shall be
the main focus of our analysis) is current–current deformations � = J J̄ with currents J and
J̄ . In the presence of a boundary we shall also assume that J = ω(J̄ ) at the boundary. The
perturbation � is then exactly marginal on worldsheets with boundary if the OPE of J and
ω(J ) does not contain a marginal or relevant field [9]. Some of our statements also generalize
to more general current–current deformations of the form � = ∑

JiJ̄
′
i ; this will be briefly

discussed in the conclusions (see section 4).
Throughout the paper we shall assume that the spectrum of L0 and L̄0 is bounded from

below by zero, and that the state with L0 = L̄0 = 0 is unique (the vacuum). Then it follows,
for example, that the exactly marginal bulk field � is a primary field with respect to both
Virasoro algebras.

2. Bulk symmetries

First, we want to investigate under which conditions bulk symmetries are preserved by an
exactly marginal bulk deformation. Let us assume that the field S belongs to the chiral
symmetry algebra A before the perturbation. We want to ask whether the corresponding
symmetry is preserved under the deformation, i.e. whether S remains a chiral field.
Equivalently, we can investigate whether the operator product expansion with the anti-
holomorphic stress–energy tensor T̄ remains trivial.

In order to study this question, we consider the correlator 〈· · · S(z)T̄ (v̄)〉 and look for
singularities in z̄ − v̄. To first order in the perturbation we find

λ

∫
d2w〈· · · S(z)T̄ (v̄)�(w, w̄)〉 ∼ λ

∫
d2w

(
1

(v̄ − w̄)2
+

1

v̄ − w̄
∂w̄

)
〈· · · S(z)�(w, w̄)〉

∼ λ

∫
d2w ∂w̄

(
1

v̄ − w̄
〈· · · S(z)�(w, w̄)〉

)

∼ λ

2i

∮
|z−w|=ε

dw
1

v̄ − w̄
〈· · · S(z)�(w, w̄)〉. (2.1)
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Here we have only kept the terms that could contribute to a singularity in v̄ − z̄. From the
last expression we see that—in the limit ε → 0—we get a contribution precisely if there is a
term proportional to (w − z)−1 (expanded in w around z); in that case we find a singularity
proportional to (v̄ − z̄)−1. (One might have expected that there could also be a term (v̄ − z̄)−2

which in the operator product expansion (OPE) would correspond to a non-vanishing right-
moving conformal weight h̄, but such a term can only arise at the second order).

We can, therefore, conclude that the chiral symmetry S is preserved to first order in the
perturbation if

lim
ε→0

∮
|w−z|=ε

dw �(w, w̄)S(z) = 0. (2.2)

By assumption this condition must be satisfied if we take S to be the chiral component of the
stress–energy tensor S = T . Indeed, since � is marginal we have

�(w, w̄)T (z) = 1

(z − w)2
�(w, w̄) +

1

z − w
∂w�(w, w̄) + O(1), (2.3)

from which (2.2) immediately follows5.
Condition (2.2) applies to general marginal deformations �. In the specific case where �

is a current–current deformation, �(w, w̄) = J (w)J̄ (w̄), the above condition simply amounts
to the requirement that S does not carry any charge corresponding to J , so the symmetry algebra
after deformation is Ainv = {S ∈ A, J0S = 0}. Similarly, the unbroken anti-chiral symmetry
algebra after the deformation is Āinv = {S̄ ∈ Ā, J̄ 0S̄ = 0}.

2.1. The higher order analysis

The above analysis has only been to first order in the perturbation, and the condition (2.2) is,
therefore, only a necessary condition. In order to analyse whether it is also sufficient we have
to check whether (2.2) remains true even after perturbation. If this is the case, then at every
order in perturbation theory we can use the above argument to deduce that we do not obtain a
non-trivial OPE between T̄ and S.

Unfortunately, the analysis is quite complicated in the general case, but we can say
something for the special case where the perturbation is a current–current deformation,
� = J J̄ . We normalize the currents so that

J (z)J (w) = 1

(z − w)2
+ O(1), J̄ (z̄)J̄ (w̄) = 1

(z̄ − w̄)2
+ O(1). (2.4)

Condition (2.2) implies that the OPE of J and S is of the form

J (w)S(z) =
hS∑

n=1

1

(w − z)n+1
V (JnS, z) + O(1), (2.5)

i.e. that the n = 0 term is not present. Here V (φ, z) denotes the field corresponding to the
state φ. We want to check whether the property (2.2) remains true to next order in perturbation
theory. To this end we consider the correlator

I =
〈
· · ·�(w, w̄)S(z)

∫
d2v �(v, v̄)

〉
, (2.6)

and look for a term corresponding to a simple pole (w−z)−1. The integrand can be calculated
by expressing � in terms of the currents � = J J̄ , and by using the operator product expansion

5 In [21], the preservation of the conformal symmetry was demonstrated by showing that the modes of the deformed
energy–momentum tensor still form a Virasoro algebra with the same central charge.
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of J̄ (w̄) with the other fields; this leads to

I =
∫

d2v

〈
· · · J (w)S(z)J (v)

1

(v̄ − w̄)2

〉
(2.7)

+
∫

d2v

〈(∑
i

· · · [J̄ (w̄)φi(zi, z̄i)] · · ·
)

J (w)S(z)J (v)J̄ (v̄)

〉
, (2.8)

where we have denoted the singular contribution of the OPE of J̄ (w̄) with the field φi(zi, z̄i)

by a square bracket. By the same trick as in (2.1), the first integral can be written as a contour
integral over dv which encircles the points w, z, as well as the other insertion points zi ,∮

w,z,zi

dv〈· · · J (w)S(z)J (v)〉 1

v̄ − w̄
. (2.9)

The contribution around w does not have any singularity in w − z, the contribution from z

vanishes by the above assumption (2.5) and the contribution from zi cannot generate any new
pole in (w − z).

In the second integral (2.8), we replace J (w) again by the singular terms of its operator
product expansions. The contributions from the insertion points zi and v do not have any
singularity in w − z, and the contribution from z cannot produce a single pole (w − z)−1 again
because of (2.5).

Thus we can conclude that the condition (2.2) also holds in the deformed theory, and the
chirality of S is not spoiled at second order. Assuming that J and J̄ remain currents along the
deformation, this shows that the chirality is preserved to all orders in the perturbation theory.

2.2. An example: Gepner models

To illustrate the general condition (2.2) let us consider a Gepner model [22] corresponding to
the Calabi–Yau three-fold W = 0 in weighted complex projective space, where

W =
5∑

i=1

x
ni

i , and
5∑

i=1

1

ni

= 1. (2.10)

The relevant Gepner model is then (an orbifold of) the tensor product of five N = 2
superconformal minimal models at level ki = ni − 2. The corresponding bulk conformal
field theory possesses the diagonal N = 2 superconformal symmetry at central charge c = 9,
but also the five individual N = 2 superconformal symmetries at

ci = 3ki

ki + 2
, ni = ki + 2. (2.11)

Complex structure deformations of the Calabi–Yau manifold are described by polynomials
in xi that have the appropriate scaling behaviour in the weighted projective space (see, e.g.,
the review [23]); in terms of conformal field theory, these deformations are described by (cc)
fields

�̂ = φ1
l1l10φ

2
l2l20φ

3
l3l30φ

4
l4l40φ

5
l5l50, where

5∑
i=1

li

ki + 2
= 1. (2.12)

Here φi
lms denotes the bulk field corresponding to the representation (lms) ⊗ (lms) of the

ith N = 2 factor, and (lms) are the usual coset labels of the N = 2 superconformal algebra—
see, for example, [23]. The field �̂ has a total conformal weight equal to h = 1/2, and total
u(1) charge 1, J0�̂ = �̂.
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The actual perturbing field is obtained from �̂ by application of the N = 1 supercharges
G = G+ +G− and Ḡ = Ḡ+ +Ḡ−. Since �̂ is a cc field, G+

−1/2�̂ = Ḡ+
−1/2�̂ = 0, and hence the

perturbing field is � ≡ G−
−1/2Ḡ

−
−1/2�̂. Since �̂ has a total u(1) charge equal to q = q̄ = 1, it

follows that � has total u(1) charge equal to zero,

J0� = 0, (2.13)

and similarly J̄ 0� = 0.
We can now apply our condition (2.2) to the different generators of the diagonal N = 2

superconformal algebra. Since � is (exactly) marginal, the conformal symmetry is preserved
(see the discussion following (2.2)). As for the total u(1) current of the N = 2 algebra,
taking S = J , (2.2) vanishes because of (2.13). Finally, the residues of the operator product
expansion of G± with � are proportional to

G+
1/2G

−
−1/2�̂ = (2L0 − J0)�̂ = 0, and G−

1/2G
−
−1/2�̂ = 0. (2.14)

It thus follows that the diagonal N = 2 superconformal algebra remains a symmetry under this
perturbation. This is certainly what one expects since the perturbation preserves spacetime
supersymmetry.

On the other hand, it follows from a similar reasoning that the ith N = 2 superconformal
symmetry is not preserved unless li = 0. This is obviously also in line with general
expectations.

2.3. Another example: WZW models and the free boson

As another example we consider a Wess–Zumino–Witten (WZW) model describing strings on a
Lie group G. The symmetry algebra A is generated from the affine Lie algebra g corresponding
to G. A current–current deformation � = J J̄ singles out a subgroup U(1) ⊂ G (for a
discussion of current–current deformations of WZW models see [24, 25]). We can decompose
the vacuum sector in terms of representations of the coset algebra g/u(1) and the u(1) theory6,

Hg

0 =
⊕
m∈Z

Hg/u(1)

(0,m) ⊗ Hu(1)
m . (2.15)

Projecting onto the states which are uncharged with respect to the u(1) leaves us with the term
with m = 0. Thus the subalgebra Ainv that is preserved under the deformation is precisely the
tensor product of the coset algebra and the u(1) algebra.

A particular example is the SU(2) WZW model at level k = 1. It describes the same theory
as the free boson compactified on a circle at the selfdual radius. The marginal deformations
have been investigated, and the complete connected moduli space is known [6, 26]. When the
theory is infinitesimally deformed away from the selfdual radius, the symmetry is broken to
the u(1) algebra. When we continue to deform the theory, other points of enhanced symmetry
will be reached: in fact at any rational value of the radius squared (when the radius is measured
in units of the selfdual radius) there will be an enhanced symmetry. Similar considerations
apply to the moduli space of N = 1 supersymmetric theories of a free boson and a free fermion
on a circle [27].

3. Deformed gluing conditions

Up to now we have analysed whether symmetries of the bulk theory remain intact under
perturbations by exactly marginal bulk operators. We have seen that a necessary condition for

6 Here the u(1) algebra is just the Heisenberg algebra of one current, without the inclusion of any charged fields.
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this is (2.2). For the case of current–current deformations we have furthermore shown that
this condition guarantees that S remains chiral to arbitrary order in the perturbation theory.

Now we want to analyse how symmetries of a boundary theory are affected by a bulk
perturbation. To this end, we introduce a boundary into our theory and consider the conformal
field theory on the upper half-plane H+. In general, an exactly marginal bulk perturbation
can break the conformal invariance at the boundary and induce a renormalization group flow
[9]. If this is the case, it will be very difficult to make predictions about the symmetries of
the fixed-point theory (since the fixed point will be, in general, far away from the original
boundary theory). We shall, therefore, restrict ourselves to bulk deformations which do not
induce a non-trivial RG flow, and which, therefore, preserve the conformal invariance on the
upper half-plane. This will be the case provided that certain bulk-boundary OPE coefficients
vanish [9]; we shall give an independent proof of this result in the following subsection.

If this condition is satisfied, we can ask how the symmetries of a boundary theory (that
come from bulk symmetries) behave under a bulk perturbation. We shall give arguments to
suggest that the boundary condition always preserves those gluing conditions that continue to
make sense in the bulk.

3.1. Preserving the conformal invariance

Let us begin by analysing whether the boundary condition remains conformally invariant
under a bulk perturbation. Conformal invariance of a boundary condition requires that the
energy–momentum tensor satisfies the gluing condition

T (z) = T̄ (z̄) at z = z̄. (3.1)

We want to study whether this condition remains true under the bulk perturbation, so we have
to look at the limit of correlators

lim
y→0

〈· · · (T (z) − T̄ (z̄))〉λ (3.2)

with z = x + iy. The first-order correction to the gluing condition comes from

�T = lim
y→0

λ

∫
Im w>ε/2

d2w(T (z) − T̄ (z̄))�(w, w̄), (3.3)

where the expression is understood to be inserted into a correlator. Note that it is important
that we first make a Laurent expansion in the regulator ε before taking the limit y → 0, as
otherwise the expression vanishes trivially. Since � is primary, the singular part of the OPE
in the presence of the boundary is

(T (z) − T̄ (z̄))�(w, w̄) ∼ 1

(z − w)2
�(w, w̄) +

1

(z − w)
∂w�(w, w̄) − ((z, w) → (z̄, w̄))

+
1

(z − w̄)2
�(w, w̄) +

1

(z − w̄)
∂w̄�(w, w̄) − ((z, w̄) → (z̄, w)),

where the second line arises from the mirror images that are required to guarantee that (3.1)
holds in all correlators. As before in (2.1) we can rewrite the right-hand side in terms of
derivatives with respect to ∂w and ∂w̄; we can thus write �T as

�T = lim
y→0

[
iλ

2

∫
Im w=ε/2

dw̄

{
1

z − w
�(w, w̄) − (z → z̄)

}

− iλ

2

∫
Im w=ε/2

dw

{
1

z − w̄
�(w, w̄) − (z → z̄)

}]
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= lim
y→0

iλ

2

∫
R

du

{
1

z − u − iε/2
− 1

z − u + iε/2
− (z → z̄)

}
�(u + iε/2, u − iε/2)

= lim
y→0

iλ

2

∫
R

du

{
iε

(z − u)2 + ε2/4
− (z → z̄)

}
�(u + iε/2, u − iε/2), (3.4)

where the minus sign in the second line arises because d2w = i
2 dw ∧ dw̄ = − i

2 dw̄ ∧ dw.
For small ε we can now use the bulk-boundary operator product expansion to write

�(u + iε/2, u − iε/2) ∼
∑

i

εhψi
−2Biψi(u), (3.5)

where ψi are boundary fields and Bi are the bulk boundary coefficients. Since hψ � 0, the
most singular term is proportional to ε−2; thus we may drop the ε2/4 term in the denominator
of the last line of (3.4). The limit y → 0 of the bracket in (3.4) is of the form

lim
y→0

(
1

(x + iy − u)n
− 1

(x − iy − u)n

)
= (−1)n

2π i

(n − 1)!
δ(n−1)(u − x) (3.6)

with n = 2, and hence leads to a derivative of a delta function. Altogether we therefore find

�T = −π iλ
∑

i

εhψi
−1Bi∂xψi(x). (3.7)

It follows that the gluing condition for T is violated if in the bulk-boundary operator product
expansion of � there are relevant or marginal boundary fields (hψi

� 1). The only exception
is the vacuum (h = 0), since then there is no x-dependence and the derivative vanishes.
This analysis reproduces precisely the condition that was found in [9] from considering the
combined bulk-boundary renormalization group equations.

In the case of current–current deformations � = J J̄ , for which J̄ = ω(J ) at the boundary
with ω(J ) some chiral current, the above condition is simply the requirement that the OPE
of J with ω(J ) does not contain a simple pole. In this case the argument generalizes to all
orders: it is not difficult to show that the OPE of J and ω(J ) will not acquire a pole term
under the deformation, so that �T = 0 also for finite λ. For a general perturbation, however,
the first-order criterion only provides a necessary, but not a sufficient condition for � to be
exactly marginal.

3.2. Preserving a general symmetry

Let us now assume that the bulk deformation is exactly marginal on surfaces with boundary
so that no relevant or marginal field is switched on at the boundary. In this case, the boundary
only adjusts infinitesimally to the bulk perturbation and we may hope to make statements
about the symmetries it will continue to preserve.

In the following, we shall only consider current–current deformations � = J J̄ for which
J̄ = ω(J ) at the boundary. Here ω is an automorphism of the chiral algebra that is preserved
by the boundary. As we have just explained, in order for this perturbation to be exactly
marginal in the presence of the boundary, we need to have that the OPE of J with ω(J ) does
not contain a simple pole.

Suppose now that the boundary condition preserves the symmetry associated with some
chiral field S,

ω(S)(z) = S̄(z̄) at z = z̄, (3.8)

where ω is an automorphism of the preserved chiral algebra A. We want to ask whether
after the perturbation by �, (3.8) still holds, possibly for some adjusted ω. Obviously for
this to make sense we have to require that ω(S) continues to be a chiral field even after the
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perturbation (ω(S) ∈ Ainv), and similarly for S̄; thus we want to assume that (2.2) holds for
ω(S), and similarly for S̄. Since Ā ∼= A the latter condition is equivalent to the statement that
J does not have a simple pole with S. Altogether we thus require that the OPEs of J with S
and ω(S) do not have simple poles.

There is one subtle point that is worth mentioning. If ω(Ainv) �⊂ Ainv, the field ω(S)

can only be chosen from the intersection Ac = Ainv ∩ ω(Ainv). The symmetry algebra on the
boundary that can arise from gluing bulk fields is then smaller than the symmetry Ainv that
is preserved in the bulk. As we shall explain in section 4, the boundary theory actually still
preserves (in a certain sense) the full symmetry algebra Ainv; for the time being, however, we
concentrate on the symmetries Ac that can be understood in terms of gluing conditions.

Let us thus consider a field ω(S) ∈ Ac. As in the previous subsection we want to study
the expression (this is again to be understood to be inserted into an arbitrary correlator)

�S = lim
y→0

λ

∫
d2w(ω(S)(z) − S̄(z̄))�(w, w̄)

= lim
y→0

λ

∫
d2w

( hS∑
n=1

1

(w − z)n+1
V (Jnω(S), z)J̄ (w̄)

+
hS∑

n=1

1

(w̄ − z)n+1
V (ω(J )nω(S), z)J (w) − (z → z̄)

)
(3.9)

= − lim
y→0

iλ

2

∫
R

du

( hS∑
n=1

1

n

1

(u − z)n
V (Jnω(S), z)ω(J )(u)

−
hS∑

n=1

1

n

1

(u − z)n
V (ω(J )nω(S), z)J (u) − (z → z̄)

)
. (3.10)

We now want to close the contour in the upper half-plane. The poles at insertion points of
other fields in the correlator cancel in the expression in the limit y → 0. The only pole that
can give a contribution is at u = z. To determine its residue we use the full OPE of the fields,

ω(J )(u)V (Jnω(S), z) =
∑

m�hS−n

1

(u − z)m+1
V (ω(J )mJnω(S), z). (3.11)

The residue thus comes from the term with m = −n, so that we obtain

�S = πλ

hS∑
n=1

1

n
[V (ω(J )−nJnω(S), x) − V (J−nω(J )nω(S), x)]. (3.12)

Introducing the operator

Kω = −i
∑
n>0

1

n
(ω(J )−nJn − J−nω(J )n), (3.13)

we can rewrite the result as

�S = lim
y→0

λ

∫
d2w(ω(S)(z) − S̄(z̄))�(w, w̄) = iπλV (Kωω(S), x). (3.14)

This suggests that we can absorb the change �S into a redefinition of the automorphism ω,
i.e. that we have to first order in the perturbation

ωλ(S) = ω(S) − iπλV (Kωω(S)). (3.15)



Symmetries of perturbed conformal field theories 13695

We need to show that ωλ (to first order in λ) still defines an automorphism. Suppose that
we can write J = i∂X1 and ω(J ) = i∂X2, where X1 and X2 are free boson fields. Then
Kω is precisely the rotation generator in the X1–X2 plane, except that in the definition of Kω

the zero modes are missing. Since by assumption J0ω(S) = ω(J )0ω(S) = 0, these zero
modes can be added to Kω without modifying the action on ω(S). Thus we can think of the
correction term in (3.15) as an infinitesimal rotation generator, implying that (3.15) defines
indeed an automorphism of the chiral algebra7. More generally, we can prove without any
further assumptions that (3.15) defines an automorphism if S is a current; this is explained in
appendix A.

3.3. Example: diagonal torus branes

As an example of the above results we consider a diagonal one-dimensional brane on a square
torus with radii R1 = R2 = R, satisfying the gluing conditions

J 1(z) = J̄ 2(z̄), J 2(z) = J̄ 1(z̄), z = z̄, (3.16)

where J l = i∂Xl is the u(1) current corresponding to the lth direction. We now deform the
torus by changing the first of the two equal radii, setting � = J 1J̄ 1.

Obviously this bulk perturbation preserves the chiral u(1) symmetries, i.e. satisfies (2.2).
Furthermore, if we take the bulk perturbation � to the boundary we do not switch on a marginal
or relevant field since

�(z, z̄)|y→0 ∼ J 1(x + iy)J 2(x − iy) ∼ O(1). (3.17)

Thus the bulk perturbation is exactly marginal on the disc and we expect that the boundary
condition continues to preserve the above u(1)-symmetries. The gluing condition, however,
will get adjusted as detailed above. In fact, one can guess that the adjustment of the gluing
conditions will simply describe the fact that the brane will continue to stretch diagonally across
the torus. This motivates us to make the ansatz for the gluing conditions

ωλ(J
1) = −cos ϕλJ

1 + sin ϕλJ
2 (3.18)

ωλ(J
2) = sin ϕλJ

1 + cos ϕλJ
2, (3.19)

where ϕλ is a λ-dependent angle with initial condition ϕ0 = π
2 . Let us fix some value for the

parameter λ, and consider a small shift λ → λ + δλ. The change in the gluing condition for
J 1 is then given by

iπδλV (Kωλωλ(J
1)) = −πδλ(sin2 ϕλJ

1 + sin ϕλ cos ϕλJ
2), (3.20)

and similarly for J 2. If our ansatz is correct, we must be able to absorb this shift into a
redefinition of ϕλ. Thus we obtain the differential equations for the angle ϕλ,

d

dλ
cos ϕλ = −π sin2 ϕλ,

d

dλ
sin ϕλ = π sin ϕλ cos ϕλ. (3.21)

These are both equivalent to the differential equation for ϕλ

d

dλ
ϕλ = π sin ϕλ or

d

dλ
ξ(λ) = πξ(λ), (3.22)

where ξ(λ) = tan ϕλ

2 . The solution is

ξ(λ) = eπλ = tan
ϕλ

2
. (3.23)
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R R

R

ϕλ

2

Re−πλ

Figure 2. When one of the radii in the two-torus is deformed, the brane continues to stretch
diagonally and its inclination changes.

The gluing condition ωλ then corresponds to a brane at angle ϕλ

2 which sits on the diagonal
of a torus with radii R1(λ) = Re−πλ and R2 = R, in precise agreement with the geometrical
intuition (see figure 2).

This is in perfect agreement with the λ-dependence of the deformed radius R1(λ), as we
shall now explain. The action for the free boson on the first circle of radius R1 has the same
form as the infinitesimal perturbation,

S + �S = 1

2π

∫
d2w �(w, w̄) − δλ

∫
d2w �(w, w̄), (3.24)

with � = J1J̄ 1 as above. To get back to the standard normalization of the action, we have to
rescale J1 to J ′

1 = J1(1 − πδλ) and similarly for J̄ 1. Since J = i∂X1 and X1 has periodicity
2πR1, the rescaled X′

1 has periodicity 2πR′
1, implying for the radius R1 the differential

equation

dR1(λ)

dλ
= −πR1(λ), (3.25)

with the expected solution R1(λ) = R e−πλ.

4. Boundary symmetries

Up to now we have discussed the perturbed theory from the point of view of the bulk. In
particular, we have analysed whether gluing conditions of the chiral bulk fields may be adjusted
upon a bulk deformation. Obviously, every bulk field for which we can find a gluing condition
gives rise to a symmetry of the boundary theory. However, as we shall see, the converse is not
strictly true.

In the following we shall therefore study the boundary symmetries directly from the point
of view of the boundary theory. The symmetry algebra of the boundary theory is described by
the set of ‘holomorphic’ fields S (with integer conformal weight) that are local with respect
to all other boundary fields (in the sense that there are no branch cuts in the boundary OPEs).
The full spectrum of boundary fields then forms a representation of this algebra. In a weaker
sense, we can think of a boundary symmetry as an algebra of boundary fields that are only
mutually local (but not necessarily local with respect to all the other boundary fields). This
condition guarantees that these fields define a (conventional) vertex operator algebra. It is
then clear that the full boundary spectrum also forms a representation of this vertex operator
algebra, but in general the representations that appear in the spectrum will be twisted rather
than the usual untwisted representations. (Twisted representations are characterized by the
property that the monodromy of the operator in the vertex operator algebra, when taken around

7 As we shall see this is precisely what happens in the explicit example we are about to discuss.
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the field in question, may not be trivial; the general theory of twisted representations of vertex
operator algebras has been developed in [28].)

To study the behaviour of the boundary symmetries under bulk deformations we thus need
to determine changes in the boundary operator product expansion of two boundary fields. From
this we will be able to read off changes in the conformal weights as well as in the locality
properties of these boundary operators. For simplicity we shall only analyse current–current
deformations � = J J̄ for which J̄ = ω(J ) at the boundary. The results we shall obtain (see
the following section) can then be summarized as follows8:

(i) A boundary field S retains its conformal weight if and only if J0ω(J )0S = 0.
(ii) A boundary field S retains its conformal weight and remains self-local if and only if

J0S = 0 or ω(J )0S = 0.
(iii) Two mutually local fields S1, S2 that satisfy (i) and (ii) remain mutually local to one

another if and only if either J0S1 = J0S2 = 0 or ω(J )0S1 = ω(J )0S2 = 0.
(iv) A field S continues to be local with respect to all other boundary fields if J0S = 0 and

ω(J )0S = 0.

Note that ω(J )0S = 0 is equivalent to J0ω
−1(S) = 0 since ω is an automorphism of the

chiral algebra.
Case (iv) describes the strongest situation in which S remains a true symmetry of the

boundary theory. If S arises from the gluing of bulk fields, then condition (iv) coincides
with what we obtained in the last section, and the algebra of local fields is precisely the
algebra Ac = Ainv ∩ ω(Ainv). (Note that Ac consists of those fields S for which J0S = 0 and
J0ω

−1(S) = 0.) On the other hand, we see that the condition to have self-local fields (condition
(ii)) or an algebra of mutually local fields (condition (iii)) is weaker. In particular, the boundary
has a symmetry algebra (in the above weak sense) that may be larger than what we get from
gluing bulk symmetries. For example, if in the unperturbed theory the boundary preserves
the full chiral algebra A of the bulk, then the set of boundary fields {S ∈ A, J0S = 0} forms
an algebra of mutually local fields that is isomorphic to the algebra Ainv which is preserved
in the bulk. In this sense, the boundary preserves the same symmetries as the bulk under the
deformation. We shall illustrate the different conditions and their interpretation in an explicit
example in section 4.3. We shall also see that these results have interesting implications for
the structure of the open string moduli space; this will be explained in section 4.2.

4.1. The deformed boundary OPE

Let us now study the deformed OPE of two boundary fields S1(x1) and S2(x2). To this end we
insert these two fields into arbitrary perturbed correlators and look for singularities in x1 − x2.
To first order, the change in the OPE arises from the term∫

H+
d2w S1(x1)S2(x2)�(w, w̄), (4.1)

where the integral is regulated by the prescription Im w > ε/2. A change of the relative
locality is indicated by a logarithmic term log(x1 − x2).

As before we assume that � = J J̄ with J̄ = ω(J ) at the boundary. Furthermore, the
OPE of J and ω(J ) does not have a simple pole (since otherwise the perturbation will induce
a non-trivial RG flow at the boundary); it is thus of the form

J (w)ω(J )(w̄) ∼ C

(w − w̄)2
+ O(1), (4.2)

with some constant C.
8 To prove that the conditions in (ii) and (iii) are necessary we have assumed that the perturbation is Hermitian.
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By the usual recursive procedure, we can evaluate (4.1) by using the singular part of the
OPE of J (w) with the other fields. Since the singular term with J̄ is independent of x1 and
x2, it does not give rise to the term of interest. The other two OPEs on the other hand lead to∫

H+
d2w

[ hS1∑
m=0

1

(w − x1)m+1
V (JmS1, x1)S2(x2)ω(J )(w̄)

+

hS2∑
m=0

1

(w − x2)m+1
S1(x1)V (JmS2, x2)ω(J )(w̄)

]
. (4.3)

We then apply the same recursive procedure for ω(J ). For each of the above two terms there
are in turn two terms, where the OPE of ω(J ) with the fields at x1 and x2 is considered. Since
we are only interested in a contribution proportional to log(x1 − x2), only the mixed terms can
contribute,∫

H+
d2w

hS1∑
m=0

hS2∑
n=0

(
V (JmS1, x1)V (ω(J )nS2, x2)

1

(w − x1)m+1

1

(w̄ − x2)n+1

+ V (ω(J )mS1, x1)V (JnS2, x2)
1

(w̄ − x1)m+1

1

(w − x2)n+1

)
. (4.4)

To evaluate the integrals, let us first consider the terms with n > 0. By the familiar trick the
integral can then be rewritten as an integral over the real axis,∫

H+
d2w

1

(w − x1)m+1

1

(w̄ − x2)n+1
= i

2n

∫
R+iε/2

dw
1

(w − x1)m+1

1

(w̄ − x2)n

= i

2n

∫
R

dx
1(

x − x1 + i ε
2

)m+1

1(
x − x2 − i ε

2

)n . (4.5)

As n > 0, the integral falls off fast enough so that we can close the contour in the lower
half-plane. By the residue theorem, the result is then some inverse power of x1 − x2, but
certainly not logarithmic. The same argument applies for m > 0, thus we can concentrate on
m = n = 0.

In this case we have∫
H+

dx dy
1

x + iy − x1

1

x − iy − x2
=

∫ 

ε/2
dy

2π i

2iy + (x2 − x1)
(4.6)

= π log(2iy + (x2 − x1))
∣∣
ε/2, (4.7)

where we have introduced an infrared cut-off . For  → ∞, the corresponding term is
independent of x1, x2 and thus harmless. The ε-term, however, produces a (real) logarithmic
term in x1 − x2. As the second integral in (4.4) is just the complex conjugate of the first, the
condition that S1 and S2 stay mutually local is therefore

V (J0S1, x1)V (ω(J )0S2, x2) + V (ω(J )0S1, x1)V (J0S2, x2) = 0. (4.8)

This should hold inside arbitrary correlators.
We can now use this result to derive the conditions (i)–(iv) from the beginning of this

section. A boundary field S = S1 will change its conformal weight if there exists a boundary
field S2 (its conjugate field) for which the two-point function picks up a logarithmic term. For
this to be absent we, therefore, require that the vacuum expectation value of (4.8) vanishes.
By a usual contour deformation argument we may move the zero mode acting on the field at
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x2 to the field at x1; since J0 and ω(J )0 commute (because J and ω(J ) do not have a simple
pole), we then obtain the condition

2〈V (J0ω(J )0S, x1)V (S2, x2)〉 = 0. (4.9)

Since the two-point function on the boundary is non-degenerate, this can only be the case for
all S2 if J0ω(J )0S = 0, thus proving (i).

A boundary field S will stay in addition self-local if the OPE of S with itself does not have
any logarithmic coefficients. This must be the case in arbitrary correlators. Thus the condition
means that (4.8) with S = S1 = S2 must vanish as an operator identity. By considering the
OPE with an arbitrary field V (φ, z) in the limit where z → x1 and z → x2, this can only be the
case if either J0S = 0 or ω(J )0S = 0, or if J0S and ω(J )0S are proportional to one another
(so that the two terms in (4.8) cancel). In the last case, using (i), it follows that J0J0S = 0
and ω(J )0ω(J )0S = 0. If the perturbation is Hermitian, i.e. if both J0 and J̄ 0 are self-adjoint
operators, we may diagonalize J0. Then J0J0S = 0 implies that J0S = 0, and hence either
J0S = 0 or ω(J )0S = 0, thus proving (ii).

Now consider two mutually local fields S1 and S2 that satisfy (i) and (ii). The condition
that they remain mutually local is again that (4.8) holds inside an arbitrary correlator, i.e. as
an operator identity. Because of (ii), either J0S1 = 0 or ω(J )0S1 = 0, and either J0S2 = 0
or ω(J )0S2 = 0. It is then obvious that (4.8) only vanishes if either J0S1 = J0S2 = 0 or
ω(J )0S1 = ω(J )0S2 = 0, thus giving (iii).

Finally if we want a field S to stay local relative to all fields S ′, (4.8) must hold as an operator
identity for S1 = S and S2 = S ′ arbitrary. This is obviously the case if J0S = ω(J )0S = 0.
Thus we obtain (iv).

All the given arguments can be generalized to higher orders; in appendix B this is explained
for the analysis of (ii), but the line of arguments is similar in the other cases.

4.2. The open string moduli space

These considerations also have some interesting implications for the structure of the open string
moduli space. The moduli space is spanned by the exactly marginal boundary fields. The fields
S that keep conformal weight h = 1 and thus stay marginal under the bulk deformation satisfy
J0ω(J )0S = 0. This does not guarantee however that the fields remain exactly marginal.
As was shown in [12], a sufficient criterion for exact marginality is that the marginal field is
self-local. The criterion for self-locality (ii) thus provides a characterization of at least some
of the exactly marginal boundary fields.

On the other hand, at least to first order in perturbation theory, the condition for exact
marginality of S is only that no non-trivial relevant or marginal fields appear in the OPE of
S with itself. Thus the space of exactly marginal boundary fields (that parameterize the open
string moduli space) could be bigger than just the self-local marginal fields. Actually, from
the above analysis of the perturbed OPE it is clear that the only modification of the OPE of a
marginal field S with itself appears in the form of terms containing a logarithm, which implies
that the only effect is to change the conformal weights of the fields that appear in the OPE. If in
the original theory the only fields that appear in the OPE of S with itself have h > 1, then this
will continue to be so, at least for some finite range of λ. In particular, one should, therefore,
expect that exactly marginal boundary fields that retain their conformal weight h = 1 under
the deformation (i.e. that satisfy (i)) will continue to be exactly marginal for finite, but maybe
small λ. In general, there may thus be more exactly marginal fields than those characterized
by (ii); we shall see an example of this phenomenon in section 4.3.

One can also arrive at this conclusion from a different point of view. Suppose that S
is an exactly marginal boundary field before the deformation. Since we only consider bulk
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deformations � that are exactly marginal (in the presence of the boundary), we know that no
marginal or relevant boundary fields appear in the bulk-boundary OPE of �. If the direction in
the open string moduli space corresponding to S survives the bulk deformation, then � must
also remain exactly marginal with respect to the perturbed boundary condition. To analyse the
bulk-boundary OPE of � in the deformed boundary theory, we look at the deformed correlators
containing �(w, w̄) and look for singularities in w − w̄. The first-order contribution is

�(w, w̄)

∫
R

dx S(x), (4.10)

where, as usual, the expression is understood as being inserted into correlators. Writing
� = J J̄ , and using the OPE of J and ω(J ) with S, we see that the only terms that could
change the singular terms in w − w̄ are∫

R

dx
∑

m,n�0
m+n�1

V (ω(J )nJmS, x)
1

(w − x)m+1(w̄ − x)n+1
. (4.11)

Each summand gives a contribution ∼(w − w̄)−m−n−1, so the only problematic term is the
one with m = n = 0. For this term to be absent, we need that ω(J )0J0S = 0. This
coincides with the condition (i) that S does not change its conformal weight under the bulk
deformation �.

4.3. Example: deformed SU(2) × SU(2) permutation branes

Let us illustrate our analysis in an example. We consider the product of two SU(2) WZW
models at level k. On the upper half-plane we impose permutation gluing conditions on the
currents (see [29, 30]) corresponding to the automorphism

ω(J (1)) = gJ (2)g−1, ω(J (2)) = hJ (1)h−1, (4.12)

where g and h are group elements in SU(2). Since this gluing condition preserves the
full su(2)k × su(2)k symmetry, the boundary spectrum of each permutation brane forms a
(conventional) representation of su(2)k × su(2)k . In the simplest case (the brane associated
with the identity representation with g and h being arbitrary) the spectrum takes the form

H =
k⊕

l=0

Hsu(2)k
l ⊗ Hsu(2)k

l . (4.13)

Now we perturb the theory by the operator � = J
(1)
3 J̄

(1)
3 , i.e. we deform9 the U(1) sitting

inside the first SU(2). The symmetry in the bulk is broken to

Ainv = su(2)k/u(1)2k × u(1) × su(2)k. (4.14)

The chiral bulk symmetry thus only contains four fields of conformal weight one after the
perturbation; these are J

(1)
3 and J (2)

a . We also note that the bulk deformation is exactly marginal
in the presence of the permutation boundary, because the OPE of J

(1)
3 and ω

(
J

(1)
3

) = gJ
(2)
3 g−1

is non-singular.
As we have just seen, the chiral and anti-chiral fields J

(1)
± and J̄

(1)
± do not remain chiral

under the deformation. After the deformation we therefore cannot glue J
(1)
± to h−1J̄

(2)
± h and

J̄
(1)
± to gJ

(2)
± g−1 anymore. The chiral algebra that can still be preserved by gluing bulk fields

is, therefore, only

Ac = Ainv ∩ ω(Ainv) = su(2)k

u(1)2k

× u(1) × su(2)k

u(1)2k

× u(1). (4.15)

9 The deformation of untwisted D-branes in a single copy of SU(2) has been analysed in [9, 31, 32].
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Thus we are in the situation where Ac � Ainv. Note that Ac has only two fields of conformal
weight one.

Now we turn to the boundary description of the system. The boundary fields that belong
to the SU(2) currents J

(1)
± and gJ

(2)
± g−1 keep their conformal weight: they satisfy criterion

(i) of section 4, because they are either annihilated by the zero mode of J
(1)
3 or by the zero

mode of ω
(
J

(1)
3

) = gJ
(2)
3 g−1. The boundary theory, therefore, continues to have six marginal

fields. Furthermore, since they are exactly marginal in the original theory, they remain exactly
marginal, at least for some finite perturbation. (As we shall see momentarily, they will
actually remain exactly marginal for arbitrary finite perturbations.) This is in agreement with
the arguments of section 4.2; the six-dimensional moduli space of permutation branes should
survive the perturbation, because the bulk deformation � is exactly marginal for arbitrary g

and h. In the perturbed theory, these six degrees of freedom can be described as follows:
two parameterize the choice of gluing J

(1)
3 to any current of the second, undeformed su(2),

similarly two come from gluing J̄
(1)
3 , and the remaining two come from the two u(1)s that are

conserved by the brane.
Not all of these fields are however mutually local, and therefore arbitrary linear

combinations will not be self-local. Given the analysis of section 4 we expect that a subalgebra
of fields isomorphic to Ainv remains mutually local. For example, we can take the mutually
local fields to be those that are annihilated by the zero mode of J

(1)
3 . This subalgebra contains

then four fields of h = 1, namely J
(1)
3 as well as the three fields J (2)

a from the second su(2)k .
Finally, the fields that are local with respect to all boundary fields are those that are

annihilated by both the zero mode of J
(1)
3 and J

(2)
3 ; this algebra is then precisely Ac and

contains only two fields of weight one, namely J
(1)
3 and J

(2)
3 .

We can check these assertions by computing the boundary spectrum. The deformed theory
is a Zk × Zk orbifold of the product of two parafermion theories su(2)k/u(1)2k and a square
torus, with permutation gluing conditions in the coset part and a diagonal one-dimensional
brane on the torus (similar to the situation in section 3.3). The permutation boundary state on
the parafermions is not affected by the perturbation, and it is straightforward to determine the
boundary states for the diagonal branes on the deformed torus. It is then not hard to obtain the
boundary states in the orbifolded theory and from there the boundary spectra.

We shall take a shorter route here which uses geometric arguments. First, we decompose
the boundary spectrum (4.13) of the unperturbed theory into representations of su(2)k/u(1)2k

and u(1)2k ,

H =
⊕

l,m1,m2

H(l,m1) ⊗ H(l,m2) ⊗ Hu(1)2k

m1
⊗ Hu(1)2k

m2
, (4.16)

where m1,m2 run from −k + 1 up to k (with the condition l + mi even). The product of the
u(1)2k representations can be explicitly expressed in terms of momentum and winding modes.
On the level of characters we have (m1 + m2 is even)

χm1(q)χm2(q) = 1

η2(q)

∑
n∈Z

∑
m= m1+m2

2 +nk mod 2k

q
m2

2k
+(n− m1−m2

2k
)2 k

2 , (4.17)

where m corresponds to the momentum modes of the open strings, and n corresponds to the
winding modes. When we deform the radius of the first U(1), R1 → κR1, the contribution
of momentum and winding modes change. The length of the brane is changed to

√
R2

1 + R2
2,

which means that the conformal weight of a momentum mode is changed by the factor
2/(1 + κ2). A string winding perpendicular to the brane has length R1R2

/√
R2

1 + R2
2, so the
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Lb =
√

R2
1 + R2

2

Ls =
R1R2

Lb

Lb

Ls/2

R2 Ls/2

R1

Figure 3. The diagonal brane with length Lb and a string with length Ls that winds perpendicular
to the brane around the torus.

conformal weight of a winding mode is changed by a factor of 2κ2/(1 + κ2) (see figure 3).
Hence the boundary partition function of the permutation brane in the perturbed theory is

Z(q) =
∑

l,m1,m2

∑
n

∑
m= m1+m2

2 +nk mod 2k

χ(l,m1)(q)χ(l,m2)(q)
1

η2(q)
q

m2

k(1+κ2)
+(n− m1−m2

2k
)2 kκ2

(1+κ2) . (4.18)

In particular, the partition function can be written in terms of untwisted representations of
Ac, as anticipated. Given our analysis we expect, however, that we can also write the partition
function in terms of (twisted) representations of Ainv. To see that this is indeed possible we
rewrite the partition function as

Z(q) =
∑

l,m1,m2

∑
N,M

χ(l,m1)(q)χ(l,m2)(q)
1

η2(q)
q

[( m1+m2
2k

+M+N)2+(N− m1−m2
2k

−M)2κ2] k

1+κ2 , (4.19)

where we introduced the new summation variables M,N which replace the variables m, n

in (4.18) by m = m1+m2
2 + (N + M)k, n = N − M . A simple transformation of the exponent

of q yields now

Z(q) =
∑

l,m1,m2

∑
N,M

χ(l,m1)(q)χ(l,m2)(q)
1

η2(q)
q

(m2+2Nk)2

4k
+ (m1+2Mk)2

4k
+ 1

2k
(m2+2Nk)(m1+2Mk) 1−κ2

1+κ2 . (4.20)

The only effect of the deformation κ �= 1 is the term that is a product of the two u(1) charges.
Introducing twisted su(2) characters,

χ̂l,θ (q) =
∑
m∈Z

χ(l,m)(q)
1

η(q)
q

m2

4k
+θm, (4.21)

we can rewrite the partition function as

Z(q) =
∑
l,m1

∑
M

χ(l,m1)(q)χ̂
l,(M+ m1

2k
) 1−κ2

1+κ2
(q)

1

η(q)
q

(m1+2Mk)2

4k . (4.22)

Thus the partition function can indeed be written in terms of twisted su(2) characters, coset
characters and u(1) characters, giving strong support to our claim that the boundary spectrum
forms a (twisted) representation of Ainv.

Finally, we want to check our assertion that the two sets of SU(2) currents remain marginal
(and in fact exactly marginal). For concreteness let us consider the SU(2) current J

(1)
+ that

appears in the representation with l = 0,m1 = 2,m2 = 0, n = 0,m = 1. We can easily
evaluate the conformal weight of this mode in the perturbed theory,

h = h(0,2) + h(0,0) +
1

k(1 + κ2)
+

κ2

k(1 + κ2)
= 1, (4.23)

where h(0,2) = 1 − 1
k

and h(0,0) = 0. The analysis is similar for J
(1)
− and J

(2)
± . Thus it follows

that for all values of κ , there are six marginal fields which come from the SU(2) × SU(2)
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symmetry of the undeformed theory. As we have explained before they describe the six exactly
marginal boundary fields that generate the six-dimensional moduli space of the brane.

4.4. Matrix factorization examples

As a final example, we consider theories for which the perturbation is not a current–current
deformation. While we cannot study these cases in general, there is an interesting class of
examples for which we can test the above ideas. These are B-type branes in Gepner models
of Calabi–Yau three-folds discussed in section 2.2. As was explained there, under complex
structure deformations, the diagonal N = 2 algebra continues to be a symmetry of the bulk
conformal field theory. Suppose we consider a B-type D-brane in this background. Then we
can ask whether it will continue to be a B-type N = 2 brane under these complex structure
deformations. This problem is very accessible since B-type branes in these theories can be
described in terms of matrix factorizations (see [33–35] for some early references and [36] for
a review) of the associated Landau–Ginzburg model.

Our arguments above now suggest that the brane will remain B-type provided that the
bulk perturbation is exactly marginal in the presence of the brane, i.e. that no relevant or
marginal boundary field is induced by the bulk perturbation. As in the situation discussed in
[37], a non-trivial RG flow will be induced if and only if the bulk-boundary operator product
coefficient B�ψ �= 0 for some boundary fermion ψ of u(1) charge 1. Thus we want to show
that the matrix factorization is obstructed against the bulk perturbation by � if and only if
B�ψ �= 0 for some boundary fermion ψ of u(1) charge 1.

From a matrix factorization point of view a D-brane remains B-type if we can adjust the
matrix factorization Q as Q(λ) = Q + λQ1 + · · · so that Q(λ) is a matrix factorization of
W(λ) = W + λ�. To first order in λ a necessary and sufficient condition for this is that � is
exact with respect to Q [38]. If � is exact, then the bulk-boundary correlator B�ψ vanishes
for all boundary fields ψ , as follows by standard Landau–Ginzburg arguments. Thus if the
matrix factorization can be adjusted as above, the bulk-boundary correlator B�ψ vanishes, and
no marginal or relevant boundary field is turned on.

To show the converse direction we need to prove that if � is not exact with respect to Q0

(so that the matrix factorization adjustment is obstructed), then there is a boundary field ψ of
u(1) charge 1 such that B�ψ �= 0. If � is not exact, this means that � taken to the boundary
induces a chiral primary field on the boundary. From the conformal field theory we then
know that there is a non-trivial bulk boundary correlator involving these two fields; since both
are chiral primary fields, this amplitude is then also non-trivial in the topologically twisted
theory, and hence B�ψ �= 0 for some boundary field ψ . Furthermore, it follows from charge
conservation considerations in the Landau–Ginzburg theory that the bulk-boundary OPE can
only be non-trivial if ψ is a fermion of charge 1. This then proves our claim.

As an aside we note that the above analysis only applies to the Calabi–Yau three-fold
case. For the case of K3 the charge conservation analysis implies that the only boundary field
that can have a non-trivial bulk-boundary correlator with the complex structure deformation
� is a boson of charge 0. Such a field does not correspond to an exactly marginal boundary
field. However, this does not invalidate our claim concerning the symmetries of the boundary
since in the K3 case there is in fact N = 4 supersymmetry, and a brane need not remain
B-type with respect to any N = 2 subalgebra even if it continues to preserve the full N = 4
superconformal algebra—see [39] for an example. Finally, we also note that the above point of
view suggests how the criterion of [39] for obstructions of matrix factorizations on K3 against
complex structure deformations can be sharpened: the matrix factorization will be obstructed
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to first order if and only if B�ψ �= 0 for some boundary boson of charge 0. One easily checks
that the examples of [39] are in agreement with this criterion.

5. Conclusions

In this paper, we have analysed bulk and boundary symmetries in perturbed conformal field
theories where the perturbing field is exactly marginal. As one may expect, generically the
chiral symmetry algebra A of the bulk theory will be reduced, and we have given a precise
condition for which generators survive the deformation, see (2.2). For the case of a current–
current deformation, � = J J̄ , the condition is very simple: the surviving symmetry algebra
Ainv is formed by the fields S ∈ A for which J0S = 0.

We have also analysed whether the symmetries of a boundary condition are preserved
under the deformation by a current–current deformation. We have seen that if the boundary
condition preserves Ainv before deforming the bulk, it always does so after the deformation.
Thus the boundary never destroys any additional symmetries!

As we have seen the statement about the boundary symmetries is actually quite subtle,
and two cases need to be distinguished. In the first case, the boundary condition originally
preserves the algebra Ainv in the sense that the fields in Ainv and Āinv are glued at the boundary
via some automorphism ω (that is an automorphism of Ainv). Then the symmetries of the
boundary theory actually arise from gluing preserved bulk symmetries (see section 3.2). The
prime example for this phenomenon is the diagonal brane on a torus when the torus is deformed
(see section 3.3).

In the second case, the automorphism ω of A actually does not define an automorphism
of the preserved subalgebra Ainv. Then only fields in Ac = Ainv ∩ ω(Ainv) can be glued after
the deformation. From the point of view of the gluing conditions of the bulk the boundary
symmetry thus appears to be reduced to Ac. However, as discussed in section 4, the boundary
theory still has mutually local boundary fields associated with all elements of Ainv, and the
spectrum of the boundary theory can be decomposed into (twisted) representations of Ainv.
The prime example for this phenomenon is the permutation brane in the product of two SU(2)
WZW models (see section 4.3).

These results were obtained for current–current deformations, but we believe that the
general observation—the boundary symmetry is not further reduced than the bulk symmetry—
is also true for a larger class of deformations. We gave one example in section 4.4 using
techniques from matrix factorizations in Landau–Ginzburg models.

The appearance of boundary symmetry algebras that are not local with respect to all
boundary fields (and that therefore cannot arise from gluing chiral bulk fields) might have
an interesting consequence for the construction of new boundary theories. The standard
strategy for how to obtain boundary states in rational conformal field theories is by requiring
gluing conditions for the chiral algebra such that this algebra is also present on the boundary.
However, our analysis shows that the boundary theory can have a bigger symmetry than that
which is inherited from the bulk. A similar phenomenon was already noted in a specific
example in [40] (see the spectrum of the P-branes in equation (2.37) in that reference) in
trying to construct the generalized permutation branes of [41] in the conformal field theory.
One may also suspect that this idea may be relevant for the additional rank 1 factorizations
that involve ‘non-consecutive’ factors and do not correspond to permutation branes [42]: the
matrix factorization point of view suggests that their boundary symmetry is as large as that
of the permutation branes, but it is clear that this cannot arise from gluing symmetries in the
bulk.
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In this paper, we have only considered current–current deformations of the form � = J J̄

with ω(J ) = J̄ at the boundary. It is straightforward to generalize our analysis to the more
general case where � = J J̄ ′ with ω(J ′) = J̄ ′ at the boundary. We then have to distinguish
Ainv = {S; J0S = 0} and Ā′

inv = {S̄; J̄ ′
0S̄ = 0}. The gluing automorphism can be deformed for

fields in Ainv ∩ ω(A′
inv), and Ainv still plays the role of an algebra of mutually local boundary

fields.
Many results also carry over to the most general current–current deformation where

� = ∑
i Ji J̄

′
i . This deformation is exactly marginal in the bulk if the currents Ji do not have

simple poles among themselves, and similarly for J̄ ′
i [43]. Using the same arguments as in

section 2 one easily shows that the symmetry algebra that is preserved by such a deformation
is Ainv = {S; Ji,0S = 0 for all i} and similarly Ā′

inv = {S̄; J̄ ′
i,0S̄ = 0 for all i}. In the presence

of a boundary, the deformation � is exactly marginal if J̄ ′
i = ω(J ′

i ) at the boundary and if
the Ji do not have simple poles with the ω(J ′

j ). In this case, one can then also generalize
straightforwardly our analysis of deformed gluing conditions and boundary algebras.
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Appendix A. Automorphism for current algebras

In the case of current algebras, let us explicitly check that the modified map ωλ (3.15) is in
fact an automorphism. Let S(1), S(2) be two currents such that ω(S(i)) commute with J and
ω(J ), so that there is no single pole in their OPE. The effect of ωλ on the modes S(i)

m is to first
order

S(i)
m �→ ω

(
S(i)

m

) − πλ(J, ω(S)(i))ω(J )m + πλ(ω(J ), ω(S(i)))Jm, (A.1)

where (J, S) denotes the inner product of the generators corresponding to J and S. Now let us
check that the commutation relations of the current algebra are preserved under the map ωλ,
so we have to check whether[

ωλ

(
S(1)

m

)
, ωλ

(
S(2)

n

)] = ωλ

([
S(1)

m , S(2)
n

])
. (A.2)

Evaluating the left-hand side, we find[
ωλ

(
S(1)

m

)
, ωλ

(
S(2)

n

)] = ω
([

S(1)
m , S(2)

n

])
. (A.3)

We used here that in the commutators of ω(S(i)) with J, ω(J ) only central terms appear; the
total central term is then easily seen to vanish.

The commutator on the right-hand side is just the one that we would have got with the
unchanged automorphism ω. Therefore, ωλ is an automorphism if it acts in the same way as
ω on the commutator

[
S(1)

m , S(2)
n

]
. By definition

ωλ

([
S(1)

m , S(2)
n

]) = ω
([

S(1)
m , S(2)

n

]) − πλ(ω(J ), [ω(S(1)), ω(S(2))])Jm+n

+ πλ(J, [ω(S(1)), ω(S(2))])ω(J )m+n, (A.4)

where [S(1), S(2)] denotes the Lie algebra bracket corresponding to the currents S(i). Since
(J, [ω(S(1)), ω(S(2))]) = ([J, ω(S(1))], ω(S(2))) = 0 and similarly for the other term, the two
additional terms in (A.4) cancel, and we have shown that ωλ is an automorphism.
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Appendix B. Higher order analysis of boundary locality

In this appendix, we shall analyse under which conditions the self-locality of a boundary field
S remains unaffected by higher order perturbations. This continues the analysis of (ii) in
section 4.1 to higher orders.

Suppose that J (w)J̄ (w̄) is exactly marginal on the disc, i.e. that

J (w)J (z) = 1

(w − z)2
+ O(1), J̄ (w̄)J̄ (z̄) = 1

(w̄ − z̄)2
+ O(1), (B.1)

and

J (w)ω(J )(z̄) = C

(w − z̄)2
+ O(1), (B.2)

where C is some constant (that may be zero). Moreover, we assume that S does not change
its conformal weight to first order in the perturbation. The analysis in section 4.1 then tells us
that either J0S = 0 or ω(J )0S = 0. For definiteness let us assume in the following that the
first case holds, J0S = 0.

The contribution to the deformed OPE at order n is given by

λnS(x1)S(x2)

n∏
i=1

∫
d2wi J (wi)ω(J )(w̄i), (B.3)

which as usual is understood to be inserted into arbitrary correlators. By the usual arguments
this can be evaluated by summing the singular terms that arise from the OPE of the currents
with the other fields. Note that the integral in (B.3) is regularized by |wi − wj | > ε (and of
course Im (wi) > ε/2). The regularization is obviously only important if there actually is a
pole in wi − wj ; otherwise it will only lead to terms of order ε that we can neglect.

Let us now discuss the different pole terms that arise. In the following, we will not
distinguish between J and ω(J ), and w and w̄, unless stated otherwise. We will denote the
singular contribution from the operator product expansion between operators at u and v by the
symbol u → v; with these conventions there are the following terms to consider:

(1) wk → w̄k: the pole (wk − w̄k)
−2 only gives a (divergent) overall renormalization.

(2) wk → w̄j and w̄k → wj : again wk and wj integrals are independent of all other variables
and thus only give an overall normalization factor. The same applies for wk → wj and
w̄k → w̄j .

(3) wk → wj but w̄k → wl : evaluate

∫
d2wk(wk − wj)

−2(w̄k − wl)
−2 =

∫
∂H+,wi

dwk(wk − wj)
−2(w̄k − wl)

−1, (B.4)

where the integral is taken along the real axis, as well as around little circles surrounding
the points wi . The contour integral around wi with i �= j, l is zero since the function is
regular at that point. Similarly, the integral around wj and wl gives zero. The integral
along the real axis can be evaluated by closing the contour. Depending on whether wj

and wl are in the upper or in the lower half-plane (or more precisely, whether we consider
w or w̄), it gives either zero or a term ∼(wl − wj)

−2. Effectively we have thus reduced
the problem to the one where J (wk) is absent, and we consider the pole contribution from
wl → wj .
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This deals with all the poles between the different currents J and ω(J ). It remains to
analyse the poles that involve at least one S. There are two more cases to consider:

(4) wk → xi and w̄k → xj : this is the situation discussed in section 4.1. Note that we can still
use translation invariance, as the integrand is regular at all points wk = wi . A logarithmic
term in x1 − x2 could only be produced if both zero modes J0 and ω(J )0 act on the fields
S, but this gives zero, because we assumed J0S = 0. We thus obtain meromorphic terms
in x1, x2, and new operators of the form V (JmS; xi) and V (ω(J )nS; xj ),m > 0, n � 0.
Obviously [J0, Jn] = 0, and because of (B.2) [J0, ω(J )n] = 0. This means that the new
fields do not have any simple pole with the current J , so that we can continue to use the
same arguments as before.

(5) wk → x1, but w̄k → w̄l : by the same arguments as in (3) above we do not get anything
new if wl → wj , so we may assume that wl → xi . If wl → x1, then the wk and wl

integrals only depend on x1, and no other variables. By translation invariance this is just
a constant factor.

The only remaining cases are thus wk → x1, w̄k → w̄l, wl → x2, and similar situations
with w and w̄ exchanged. Let us consider first the contribution∫

d2wl d2wk[J (wk)S(x1)][J (wl)S(x2)]
1

(w̄k − w̄l)2
, (B.5)

where we denote the singular part of the OPE by square brackets. The domain of integration
is restricted by |wl − wk| > ε and Im wl, Im wk > ε

2 . Write wl = ul + ivl and redefine
ŵk = wk − ul . The variable ul is integrated over the real axis without any restrictions. The
integrand has poles in ul at ul = x2 − ivl and at ul = x1 − ŵk which both lie on the lower
half-plane. By closing the contour in the upper half-plane we thus see that this contribution
vanishes.

The same argument applies for the case w̄k → x1, wk → wl, w̄l → x2, so the only
remaining contribution that we need to consider comes from w̄k → x1, wk → w̄l, wl → x2,
which is of the form∫

d2wl d2wk

1

(wk − w̄l)2

hS∑
m=0

hS∑
n=1

1

(w̄k − x1)m+1

1

(wl − x2)n+1
V (ω(J )mS, x1)V (JnS, x2).

(B.6)

Note that there is no term with n = 0. It is not hard to see that the integral for each summand
produces a contribution ∼(x1 − x2)

−(m+n), so that a logarithmic term could only appear for
m = n = 0.

In summary, we have thus shown that there will be no logarithmic terms to any order in
perturbation theory if they do not arise at first order.
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